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ABSTRACT 

The aim of the study is to optimize and predict the 

optimal combination of current, voltage and 

welding speed needed to maximize heat input in 

order to eliminate crack formation in mild steel 

weldment using response surface methodology 

(RSM) and artificial neural network (ANN). 

The key input parameters considered in this work 

are welding current, welding voltage and welding 

speed while the response or measured parameter is 

preheat temperature (PT). Using the range and 

levels of the independent variables, statistical 

design of experiment (DOE) using central 

composite design (CCD) method was employed to 

randomize the input variables. Hundred (100) 

pieces of mild steel coupons measuring 60 x 40 x10 

were used for the experiments. The experiment was 

performed 20 times, using 5 specimens for each 

run. The plate samples were 60 mm long with a 

wall thickness of 10mm. The samples were cut 

longitudinally with a Single-V joint preparation. 

The tungsten inert gas welding equipment was used 

to weld the plates after the edges have been 

bevelled and machined. The welding process uses a 

shielding gas to protect the weld specimen from 

atmospheric interaction. For this study, 100% pure 

Argon gas was used. The weld samples were made 

from 10mm thickness of mild steel plate; the plate 

was cut to size with the power hacksaw. The edges 

grinded and surfaces polished with emery paper 

and the joints welded and thereafter, the response 

(preheat temperature) was measured and recorded. 

To optimize the welding process, numerical 

optimization based on response surface 

methodology was employed while the prediction of 

heat input using input variables not captured by the 

design of experiment was done using artificial 

neural network.  

From the result, it was observed that; for a current 

of 190.00amp, voltage of 21.95volts and welding 

speed of 5.00mm/s the maximized heat input was 

computed to be 1.69076KJ/mm. In addition, the 

reliability plot of observed heat input versus ANN 

predicted heat input yielded a coefficient of 

determination (R
2
) value of 0.9940 thus supporting 

the application of ANN and RSM for the 

optimization and prediction of heat input 

  Keyword: Heat input (HI), Design of experiment, 

Central composite design, Response surface 

methodology and artificial neural network 

 

I. INTRODUCTION 
Filler metal alloys, such as elemental 

aluminum and chromium, can be lost through the 

electric arc from volatilization. This loss does not 

occur with the GTAW process. Because the 

resulting welds have the same chemical integrity as 

the original base metal or match the base metals 

more closely (Watkins and Mizia, 2003).  GTAW 

welds are highly resistant to corrosion and cracking 

over long time periods, making it the welding 

procedure of choice for critical operations like 

sealing spent nuclear fuel canisters before burial 

(Weman, 2003). 

The metallurgical and mechanical 

properties of a weld depend on the bead geometry 

which is directly related to welding process 

parameters (Kimchi et al. 2002). It is pertinent to 
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note that; post weld defects such as cracks are 

generated on the weld line when the weld product 

is subjected to a bending stress or shocks (Tarun et 

al. 2014). 

The quality and strength of a weld is 

characterized by the reduction and elimination of 

weld defects such as cracks, undercut, deformation, 

porosity in addition to controlling the heat input 

which is a very strong determining factor needed to 

produce a reliable weld (Shubhavardhan and 

Surendran, 2012). One of the fundamental issues 

facing Engineers in the manufacturing sector is the 

problem of choosing the most suitable 

combinations of input process parameters in order 

to achieve the required optimum weld bead quality 

(Springer et al. 2011). It is a well-known fact that 

most welders mainly focused on bead geometry 

and aesthetics of the weld structure, but the 

reduction in post weld cracks which determines the 

overall quality of weldment has not been paid 

much attention (Navid and Jill, 2016). These 

problems can be solved with the development of 

mathematical models through effective and 

strategic planning, design and execution of 

experiments (Vikram, 2013) 

Numerous supervised machine learning 

algorithm are available for achieving these task. 

Popular among them is response surface 

methodology (RSM), support vector machine 

(SVM), random forest algorithm and artificial 

neural network (ANN) (Ghosh et al., 2016). 

Response surface methodology is an advance 

statistical technique which involves the 

incorporation of the second order effects of non-

linear relationships (Cerino-Cordova et al., 2011). 

It is a popular optimization technique employed in 

most process industries to determine the best 

possible combination of variables needed to 

optimize a specific response while artificial neural 

network is a predictive technique that employs 

different training algorithm and neurons to learn on 

a particular task. Numerous literatures on the 

application of machine learning algorithm were 

reviewed in the course of this study. Notable 

among the literatures includes; 

 

II. RESEARCH METHODOLOGY 
The key input parameters considered in 

the study includes; welding current, welding 

voltage and welding speed while the response or 

measured variable is heat input (HI). The range and 

level of the experimental variables used  for 

statistical design of experiment are presented in 

Table 1 

 

Table 1: Range and Levels of independent variables 

Independent Variables Range and Levels of Input Variables 

Lower Range (-1) Upper Range (+1) 

Welding Current (Amp) X1 170 190 

Welding Voltage (Volt) X2 21 25 

Welding Speed (mm/s) X2 2 5 

 

Using the range and levels of the independent variables presented in Table 1, statistical design of experiment 

(DOE) using central composite design (CCD) method was done. The total number of experimental runs that can 

be generated using the CCD is defined as; 

N= 2
n 

+ no + 2n          (1)  

Where; 

N; is the number of experimental runs based on CCD design 

2
n
; is the number of factorial points 

n0; is the number of center points 

2n; is the number of axial points 

n; is the number of variables 

Using Equation 1, twenty (20) experimental runs were generated based on the central composite design method 

and presented in Table 2 
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Table 2: Design of experiment (DOE) 

Std Run Type Current (A) Voltage (V) 

Welding Speed 

(mm/s) 

15 1 Center 180 23 3.5 

16 2 Center 180 23 3.5 

17 3 Center 180 23 3.5 

18 4 Center 180 23 3.5 

19 5 Center 180 23 3.5 

20 6 Center 180 23 3.5 

9 7 Axial 163.1820717 23 3.5 

10 8 Axial 196.8179283 23 3.5 

11 9 Axial 180 19.63641434 3.5 

12 10 Axial 180 26.36358566 3.5 

13 11 Axial 180 23 0.977310754 

14 12 Axial 180 23 6.022689246 

1 13 Fact 170 21 2 

2 14 Fact 190 21 2 

3 15 Fact 170 25 2 

4 16 Fact 190 25 2 

5 17 Fact 170 21 5 

6 18 Fact 190 21 5 

7 19 Fact 170 25 5 

8 20 Fact 190 25 5 

 

Applying the design of experiment 

presented in Table 2, 100 pieces of mild steel 

coupons measuring 60 x 40 x10 were used for the 

experiments. The experiment was performed 20 

times, using 5 specimens for each run. The plate 

samples were 60 mm long with a wall thickness of 

10mm. The samples were cut longitudinally with a 

Single-V joint preparation. 

The tungsten inert gas welding equipment 

was used to weld the plates after the edges have 

been bevelled and machined. The welding process 

uses a shielding gas to protect the weld specimen 

from atmospheric interaction. For this study, 100% 

pure Argon gas was used. The weld samples were 

made from 10mm thickness of mild steel plate; the 

plate was cut to size with the power hacksaw. The 

edges grinded and surfaces polished with emery 

paper and the joints welded and thereafter, the 

responses were measured and recorded. The 

measured response corresponding to the input 

variable is presented in Table 3 

 

Table 3: Design of experiment (DOE) 

Run Type Current (A) Voltage (V) 

Welding Speed 

(mm/s) 

 

Heat Input 

(KJ/mm) 

1 Center 180 23 3.5 1.667 

2 Center 180 23 3.5 1.667 

3 Center 180 23 3.5 1.667 

4 Center 180 23 3.5 1.667 

5 Center 180 23 3.5 1.665 

6 Center 180 23 3.5 1.768 

7 Axial 163.1820717 23 3.5 1.203 

8 Axial 196.8179283 23 3.5 0.944 

9 Axial 180 19.63641434 3.5 1.012 

10 Axial 180 26.36358566 3.5 0.806 

11 Axial 180 23 0.977310754 0.756 

12 Axial 180 23 6.022689246 1.412 
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13 Fact 170 21 2 1.203 

14 Fact 190 21 2 2.009 

15 Fact 170 25 2 0.755 

16 Fact 190 25 2 1.12 

17 Fact 170 21 5 0.88 

18 Fact 190 21 5 1.173 

19 Fact 170 25 5 1.258 

20 Fact 190 25 5 1.775 

 

For analysis of design data, Design Expert 

Statistical Software, Version 7.01, was employed in 

order to obtain the effects, coefficients, standard 

deviations of coefficients, and other statistical 

parameters of the fitted models. The behaviour of 

the system which was used to evaluate the 

relationship between the response variables (Y1, 

Y2, Y3, Y4 and Y5) and the independent variables 

(X1, X2, and X3) was explained using the empirical 

second-order polynomial equation proposed by 

Nuran, (2007) and presented as; 

  
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Where;  

X1, X2, X3… Xk = input variables  

Y, β0, βi, βii, and βij = the known parameters and ƹ 

= the random error. 

  

To predict the heat input (HI) beyond the scope of 

experimentation; artificial neural network (ANN) 

was employed. The step by step methodology of 

applying neural network is discussed as follows; 

 

2.1 Generation of input data 

Input data employed in the training, 

validation and testing were obtained from series of 

batch experiments based on the central composite 

design of experiment under varied welding current, 

welding voltage and welding speed. A full factorial 

central composite design of an experiment with 6 

center points and 3 replicates resulted in a total of 

60 experimental runs was used as the input data. 

The data were randomly divided into three subsets 

to represent the training (60%), validation (25%) 

and testing (15%). The validation data were 

employed to assess the performance and the 

generalization potential of the trained network 

while the testing data were used to test the quality 

of the network. To avoid the problem of weight 

variation which can subsequently affect the 

efficiency of the training process, the input and 

output data were first normalized between 0.1 and 

1.0 using the normalization equation proposed by 

Sinan et al., 2011 presented in Equation 2.3 

min

max min

0.1i

x x
x

x x

-
= +

-
   

     

  (2.2) 

 

Where; 

xi; is the normalized value of the input and output 

data 

xmin; and xmax are the minimum and maximum 

value of the input and output data  

x is the input and output data. 

 

2.2 Selection of training algorithm and hidden 

neurons  

Input and output data training resulting in 

the design of network architecture is of paramount 

importance in the application of neural network to 

data modelling and prediction. To obtain the 

optimal network architecture that possess the most 

accurate understanding of the input and output 

data, two factors were considered. First was the 

selection of the most accurate training algorithm 

and secondly, the number of hidden neurons. Based 

on this consideration, different training algorithm 

and hidden neurons were selected and tested to 

determine the best training algorithm and accurate 

number of hidden neurons that will produce the 

most accurate network architecture. Selectivity was 

based on (r
2
 and MSE). 

 

2.3 Network Training/Performance of MNN 

To train the network, 3 runs of 1000 

epochs, each were used. In addition, cross 

validation data representing about 15% of the total 

input data were introduced to monitor the progress 

of training and prevent the network from 

memorizing the input data instead of leaning which 

was a common problem associated with 

overtraining. The progress of the training was 

checked using the mean square error of regression 

(MSE) graph for training and cross validation 
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2.4 Network Testing/Validation 

To test the efficiency of the trained network, 25% 

of the input data was introduced to the network. 

 

III.  RESULTS AND DISCUSSION 
The target of the optimization model was 

to maximize the heat input by optimizing the input 

variables. Using the method of numerical 

optimization based on response surface 

methodology, a second order polynomial equation 

was generated using the quadratic model. To 

validate the suitability of the quadratic model in 

analyzing the experimental data, the sequential 

model sum of squares for heat input (HI) was 

calculated and presented in Table 4 

 

Table 4: Sequential model sum of square for heat input (HI) 

 
 

The sequential model sum of squares table 

shows the accumulating improvement in the model 

fit as terms are added. Based on the calculated 

sequential model sum of square, the highest order 

polynomial where the additional terms are 

significant and the model is not aliased was 

selected as the best fit. From the results of Tables 

4, it was observed that the cubic polynomial was 

aliased hence cannot be employed to fit the final 

model. In addition, the quadratic and 2FI model 

with p-value <0.0001, F-value of 289.48, mean 

square value of 0.50 and sum of square value of 

1.51 were suggesed as the best fit. 

To test how well the quadratic model can 

explain the underlying variation associated with the 

experimental data, the lack of fit test was estimated 

for heat input (HI). Model with significant lack of 

fit cannot be employed for prediction. A result of 

the computed lack of fit for heat input is presented 

in Table 5. 
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Table 5: Lack of fit test for heat input (HI) 

 
 

From the results of Tables 5, it was 

observed that the quadratic polynomial with p-

value of 0.4856, F-value of 1.03, mean square 

value of 0.001.773 and sum of square value of 

0.008867 had a non-significant lack of fit and was 

suggested for model analysis while the cubic 

polynomial with p-value of 0.1473, F-value of 

2.94, mean square value of 0.005035 and sum of 

square value of 0.005035 had a significant lack of 

fit hence aliased to model analysis. The model 

summary statistics computed for heat input based 

on the different model sources is presented in Table 

6 

 

Table 6: Model summary statistics for heat input (HI) 

 
 

With R-squared value of 0.9940, Adjusted 

R-squared value of 0.9886, predicted R-squared 

value of 0.9721 and the predicted error sum of 

square (PRESS) value of 0.081, the quadratic 

model was acclaimed the best fit model. Low 

standard deviation, R-Squared near one and 

relatively low PRESS is the optimum criteria for 

defining the best model source. Based on the 

results of Tables 6, the quadratic polynomial model 

was suggested 

In assessing the strength of the quadratic model 

towards maximizing heat input (HI), one-way 

analysis of variance (ANOVA) was generated for 

and presented in Table 7.  
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Table 7: ANOVA table for validating the model significance towards maximizing heat input (HI) 

 
 

Analysis of variance (ANOVA) was 

needed to check whether or not the model is 

significant and also to evaluate the significant 

contributions of each individual variable, the 

combined and quadratic effects towards each 

response. From the result of Table 4.10b, the 

Model F-value of 184.67 implies the model is 

significant.  There is only a 0.01% chance that a 

"Model F-Value" this large could occur due to 

noise. Values of "Prob > F" less than 0.0500 

indicate model terms are significant. In this case A, 

B, C, AC, BC, A2, B2, C2 are significant model 

terms. Values greater than 0.1000 indicate the 

model terms are not significant. The "Lack of Fit F-

value" of 1.03 implies the Lack of Fit is not 

significant relative to the pure error. There is a 

48.56% chance that a "Lack of Fit F-value" this 

large could occur due to noise. Non-significant lack 

of fit is good as it indicates a model that is 

significant. 

To validate the adequacy of the quadratic model 

based on its ability to maximize heat input, the 

goodness of fit statistics presented in Tables 8 was 

employed; 
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Table 8: GOF statistics for validating model significance towards maximizing HI, 

 
 

From the result of Table 8, it was 

observed that the "Predicted R-Squared"  value of 

0.9721 is in reasonable agreement with the "Adj R-

Squared" value of 0.9886. Adequate precision 

measures the signal to noise ratio.  A ratio greater 

than 4 is desirable.  The computaed  ratio of 41.919 

as observed in Table 8 indicates an adequate signal.  

This model can be used to navigate the design 

space and adequately maximize heat input. Based 

on the goodness of Fit statistics, the optimized 

mathematical model which shows the relationship 

between current, voltage, welding speed and heat 

input (HI), was generated and presented as follows; 

 

HI = -94.50168+0.84575X1+2.19053X2-

3.93715X3+0.00126875X1X2+0.016058X1X3 

+0.057208X2X3-0.00256372X1
2
-0.055977X2

2
-

0.022518X3
2
 ------------------------------------- (1) 

 

Using the optimal equations, the response variable 

(heat input) was predicted and a reliability plot of 

observed versus predicted values of heat input was 

obtained and presented in Figure 2 

 

 
Figure 2: Reliability plot of observed versus predicted heat input 

 

The high coefficient of determination (R
2
 

= 0.994) as observed in Figure 2 was used to 

established the suitability of response surface 

methodology in maximizing heat input. Finally, 

numerical optimization was performed to ascertain 

the desirability of the overall model. The 

optimization objective was to maximize heat input 

(HI). The relative importance was set at the 

optimum value of 5.0 and the lower and upper 

boundary conditions were set at 0.1 and 1.0 for 

maximization. Lower boundary of 0.1 constrains 

the optimization tool to maximize the response 
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variable. The final solution of numerical optimization is presented in Table 9 

 

Table 9: Optimal solutions of numerical optimization 

 
 

From the results of Table 9, it was 

observed that a current of 190.00amp, voltage of 

21.95volts and welding speed of 5.00mm/s will 

produce a weld material with heat input (HI) of  

 

 

1.69076KJ/mm. The optimal solution was 

selected by design expert with a desirability value 

of 96.40%. To study the effects of combine input 

variables on heat input(HI), 3D surface plots was 

generated and presented in Figure 3 

 



 

 

International Journal of Advances in Engineering and Management (IJAEM) 

Volume 3, Issue 9 Sep 2021,  pp: 686-699  www.ijaem.net    ISSN: 2395-5252 

 

 

 

 

DOI: 10.35629/5252-0309686699       Impact Factor value 7.429  | ISO 9001: 2008 Certified Journal   Page 695 

 
Figure 3: Effect of current and voltage on heat input (HI) 

 

The 3D surface plots presented in Figures 

3 shows the relationship between the input 

variables (current and voltage) and the response 

variable (heat input). It is a 3 dimensional surface 

plot which was employed to give a clearer concept 

of the response surface. Although not as useful as 

the contour plot for establishing responses values 

and coordinates, the view can provide a clearer 

picture of the interactions between the input and 

the response variables. In Figure 3, the colour of 

the surface was observed to be darker towards 

current and voltage. The implication is that an 

increase in current and voltage will bring aboaut a 

proportionate increase in heat input (HI).  

To apply ANN for the prediction of heat 

input (HI), two important factors were considered 

and they include; selection of the most accurate 

training algorithm and determination of the exact 

number of hidden neurons. Table 10 shows the 

different training algorithm that were tested and 

their performance.  

 

Table 10: Selection of optimum training algorithm for ANN 

S/No Training Algorithm 

(Learning Rule) 

Training 

MSE 

Cross 

Validation MSE 

R-Square  

(r
2
) 

1 Gradient information (Step) 0.05489 0.04905 0.74 

2 Gradient and weight change 

(Momentum) 

0.05339 0.08097 0.78 

3 Gradient and rate of change 

of gradient (Quick prop) 

0.06894 0.04467 0.68 

4 Adaptive step sizes for 

gradient plus momentum 

(Delta Bar Delta) 

0.07602 0.00335 0.82 

5 Second order method for 

gradient (Conjugate 

gradient) 

0.03367 0.06703 0.79 

6 Improved second order 

method for gradient 

(Levenberg Marquardt) 

0.00028* 0.00012* 0.98* 

 

Based on the result of Table 10, improved 

second order method of gradient also known as 

Levenberg Marquardt Back Propagation training 

algorithm (LMBPTA) was selected as the best 
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since it has the highest coefficient of determination 

(R
2
) and the lowest mean square error of regression 

(MSE). To determine the exact numbers of hidden 

neuron, different numbers of hidden neurons were 

tested to create a trained network using Levenberg 

Marquardt Back Propagation training algorithm. 

The number of hidden neuron corresponding to the 

lowest MSE and the highest R
2 

as presented in 

Table 11 was selected to design the network 

architecture. 

 

Table 11: Selection of optimum number of hidden neurons for ANN 

S/No Number of 

Hidden Neurons 

Training MSE Cross Validation 

MSE 

R-Square  

(R
2
) 

1 2 0.0345 0.00453 0.75 

2 3 0.0269 0.03367 0.67 

3 5 0.0306 0.04051 0.88 

4 8 0.0178 0.02241 0.71 

5 10 0.0009 0.00033 0.97 

 

Based on the results of Tables 10 and 11, 

Levenberg Marquardt Back Propagation training 

algorithm having 10 hidden neurons in the input 

layer and output layer was used to train a network 

of 3 input processing elements, namely; current, 

voltage and welding speed and one response 

variable (heat input). 

The network training diagram generated for the 

prediction of amount of diffusible hydrogen (HIIW) 

using back propagation neural network is presented 

in Figure 4. 

 

 
Figure 4: Performance curve of trained network for predicting heat input 

 

From the performance plot of Figure 4., 

no evidence of over fitting was observed. In 

addition similar trend was observed in the 

behaviour of the training, validation and testing 

curve which is expected since the raw data were 

normalized before use. Lower mean square error is 

a fundamental criteria used to determine the 

training accuracy of a network. An error value of 
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6.3500e-09 at epoch 73 is an evidence of a network 

with strong capacity to predict heat input.  

The regression plot which shows the correlation 

between the input variables (current, voltage and 

welding speed) and the target variable (heat input) 

coupled with the progress of training, validation 

and testing is presented in Figure 5 

 

 
Figure 5: Regression plot showing the progress of training, validation and testing for maximizing heat 

input (HI) 
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Based on the computed values of the 

correlation coefficient (R) as observed in Figure 5, 

it was concluded that the network has been 

adequately trained and can be employed to predict 

heat input of the welded material. To test the 

reliability of the trained network, the network was 

thereafter employed to predict its own values of 

heat input (HI) using the same set of input 

parameters (current, voltage and welding speed) 

generated from the central composite design. Based 

on the observed and the predicted value of heat 

input, a regression plot of outputs was thereafter 

generated and presented in Figure 6 

 

 
Figure 6: Regression plot of observed versus predicted heat input 

 

Coefficient of determination (r
2
) values of 

0.9940 as observed in Figure 6 was employed to 

draw a conclusion that the the trained network can 

be used to predict heat input (HI) beyond the scope 

of experimentation.  

 

IV. CONCLUSION 
In this study, optimization and prediction 

of heat input using response surface methodoloy 

(RSM) and artificial neural network have been 

implemented successfully. The study will not only 

provide additional information to the already 

existing literatures and optimization and prediction 

of welding process, it will also form the bases for 

future research in related field of study. It is 

interesting to note that determining the optimum 

conditions for any welding process is completely 

beyond the scope of the traditional methods of 

experimentation hence, the need to optimize all the 

controlling variables collectively using statistical 

design of experiment (DOE) which allows a large 

number of factors to be screened simultaneously. In 

this study, response surface methodology (RSM) 

has been successfully applied to optimize selected 

welding variables, namely; current, voltage and 

welding speed in order to maximize the heat input 

and eliminate crack formation. The outcome of the 

study revealed that; for a current of 190.00amp, 

voltage of 21.95volts and welding speed of 

5.00mm/s, the maximized heat input was computed 

to be 1.69076KJ/mm. In addition, the reliability 

plot of observed heat input versus ANN predicted 

heat input yielded a coefficient of determination 

(R
2
) value of 0.9940 thus supporting the application 

of ANN and RSM for the optimization and 

prediction of heat input 
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